Coal Direct Chemical Looping (CDCL) Retrofit to Pulverized Coal Power Plants for In-Situ CO₂ Capture

Award #: DE-NT0005289

Liang-Shih Fan Department of Chemical and Biomolecular Engineering The Ohio State University

2012 NETL CO2 Capture Technology Meeting July 11, 2012 Pittsburgh, PA

Clean Coal Research Laboratory at The Ohio State University

Coal-Direct Chemical Looping

Syngas Chemical Looping

Cold Flow Model Sub-Pilot Scale Unit

Sub-Pilot Scale Unit

250kW_{th} Pilot Unit (Wilsonville, Alabama)

Calcium Looping Process

Sub-Pilot Unit

CCR Process

120kW_{th} Demonstration Unit

HPHT Slurry Bubble Column

Partners

Government Agencies

- DOE/NETL: Bruce Lani, Timothy Fout, David Lang
- OCDO/ODOD: Chad Smith

Industrial Collaborators

- Babcock & Wilcox (B&W): Tom Flynn, Luis Vargas, Doug Devault, Bartev Sakadjian and Hamid Sarv
- ClearSkies: Bob Statnick
- CONSOL Energy: Dan Connell, Richard Winschel, and Steve Winberg
- Air Products: Robert Broekhuis, Bernard Toseland
- Shell/CRI

Coal Direct Chemical Looping Retrofit to Pulverized Coal Power Plants for In-Situ CO₂ Capture

- Period of Performance: 2009-2012
- Total Funding (\$3.98 million):
 - U.S. Department of Energy, National Energy Technology Laboratory (\$2.86 million)
 - Ohio Coal Development Office (\$300,000)
 - The Ohio State University (\$487,000)
 - Industrial Partners (\$639,000)
- Major Tasks:
 - Phase I: Selection of iron-based oxygen carrier particle
 - Phase II: Demonstration of fuel reactor (coal char and volatile conversion) at 2.5 kW_t scale and cold flow model study
 - Phase III: Demonstration of integrated CDCL system at 25 kW_t scale and techno-economic analysis of CDCL process

CDCL Process Concept

Reducer:	$Coal + Fe_2O_3 \rightarrow Fe/FeO + CO_2 + H_2O_3$	(endothermic)
Oxidizer:	Air + Fe/FeO \rightarrow Fe ₂ O ₃ + Spent Air	(exothermic)
Overall:	Coal + Air \rightarrow CO ₂ + H ₂ O + Spent Air	(exothermic)

CDCL Process reduces exergy loss by recuperating the low grade heat while producing a larger amount of high grade heat

Coal-Direct Chemical Looping Process for Retrofit/Repower

Thomas, T., L.-S. Fan, P. Gupta, and L. G. Velazquez-Vargas, "Combustion Looping Using Composite Oxygen Carriers" U.S. Patent No. 7,767,191 (2010, priority date 2003)

The CDCL process can be also used for high efficient hydrogen production

OHIO STATE UNIVERSITY

Modes of CFB Chemical Looping Reactor Systems

Mode 1- reducer: fluidized bed or co-current gas-solid (OC) flows

Mode 2 - reducer: gas-solid (OC) countercurrent dense phase/moving bed flows

Chalmers University CLC System

Thomas, T., L.-S. Fan, P. Gupta, and L. G. Velazquez-Vargas, "Combustion Looping Using Composite Oxygen Carriers" U.S. Patent No. 7,767,191 (2010)

Reducer Design Comparison Mode 1 versus Mode 2 Using Fe-Carrier

Reducer	Mode 1	Mode 2	
Operation Regime	Bubbling, turbulent, fast	Moving packed, or multistage	
	fluidized, or spouted bed	fluidized bed	
Gas Solid Contacting Pattern	Mixed/Cocurrent	Countercurrent	
Controllability on Fuel and OC	Poor, due to back mixing	Uigh	
Conversions	and gas channeling	riigii	
Maximum Iron oxide Conversion	11.1% (to Fe_3O_4)	>50% (to Fe & FeO)	
Solids circulation rate	High	Low	
Ash Separation Technique	Separate Step	In-Situ	
Subsequent Hydrogen Production	No	Yes	
Particle size, µm	100-600	1000-3000	
Reducer gas velocity*, m/s	<0.4	>1.0	
Reactor size for the same fuel	Large	Small	
processing capacity		Sillali	
Hydrodynamics effects on scaling up	Large	Small	

*Reducer gas velocity calculated at 900 °C, 1 atm

CDCL Fuel Feed Tests Studied

Fuel Feedstock	Туре	Fuel Flow (lb/hr) Enhancer		Fuel Conversion
Coal volatile	CH ₄	0.1-0.4	H ₂	99.80%
	Lignite	0.7-2.0	CO_2/H_2O	94.90%
Coal char	Metallurgical Coke	0.05-3	CO ₂ /H ₂ O	50-97.30%
	Sub-Bituminous	0.05-7	CO_2/H_2O	60 - 99+%
Coal	Bituminous	0.05-3	CO_2/H_2O	70 – 95%
	Anthracite	0.2-0.7	CO_2/H_2O	95.50%
Biomass	Wood pellets	0.1	CO ₂	75 – 99%

- Combined >530 hours of operational experience
- CO/H₂ Fuel feedstock tested in SCL sub-pilot process for over 300 hours of successful operation
- Successful results for all coal feedstock tested

OSU CDCL Chemical Looping Process Development

300+ hours operation with >**99%** volatile conversion in Stage I test, >**95%** char conversion in Stage II Test

More than **300** types of particle tested. A low cost, robust, highly reactive, and O²⁻ conductive composite particle is obtained.

TGA

Fixed Bed Tests

Bench Scale Tests

Time

Fuel Tested

- Syngas
- Natural gas
- Biomass
- Met coke
- Lignite char
- PRB
- Illinois 6
- Pittsburgh 8
- Anthracite

Sub-Pilot CDCL Integrated Tests 200+ hours operation with >80% solid fuel conversion, smooth solid circulation, gas sealing and in-situ ash removal

Scale

25 kW_{th} Sub-Pilot Demonstration

- Fully assembled and operational
- >200 hours of Operational experience
 - 3-day continuous operation
- Harmonious solid circulation
- Confirmed non-mechanical gas sealing under reactive conditions
- 12 test campaigns completed

25 kW_{th} Sub-Pilot Demonstration

Gas Flow Control System

Coal Injection System

Process Control & Automation

Gas Analyzer

3-day Sub-Pilot Continuous Run - Sample Results

3-day Sub-Pilot Continuous Run - Sample Results

Sub-Pilot Continuous Run - Sample Results

- ~24-hour Operation
- 90-99+% Carbon Utilization
- ~99 vol.% CO₂ Purity
- ~0.6 vol.% CO and ~0.2 vol.% CH₄
 - Higher than metallurgical coke due to higher volatile contents

Mode II: Moving Bed (OSU) Reactor Development

CDCL Moving Bed Reactor – Stage I

Phase Diagram – Thermodynamic Restrictions

Shaded area is not reducer operation zone

Operating Equation for Moving Bed Reducer

Countercurrent moving bed: straight operation line with negative slope

Similarly, Concurrent fluidized bed: straight operation with positive slope

CDCL Moving Bed Reactor – Stage I

Operation Diagram

The operating line is straight when feeding ratio is fixed: solid line represents countercurrent moving bed operation, dash line represents co-current fluidized bed operation

Oxygen Carrier Development

Oxygen Carrier Particle Development

Ellingham Diagram: Selection of Primary Metal

Oxygen Carrier Particle Development

OSU Particle (over 300 particles) Performance

High Reactivity

High Recyclability

High Carbon Deposition Tolerance

High Pellet Strength

Data Analysis and Modeling

TGA - Oxygen Carrier Particle Reduction Kinetics

- Three-interface unreacted shrinking core model (USCM) *
 - Isothermal and isobaric conditions
 - The pellet volume is unchanged
 - First order reversible reaction

Three factors that affect the overall reaction rate

- Diffusion through the gas film
- Intraparticle diffusion
- Chemical reaction at reaction interface

Reaction rates at each reaction step:

$$r_{1} = \frac{P}{\tilde{R}T\omega} \begin{cases} A_{3}(A_{2} + B_{2} + B_{3} + F) + (A_{2} + B_{2})(B_{3} + F)(y - y_{1}^{*}) \\ -[A_{3}(B_{2} + B_{3} + F) + B_{2}(B_{3} + F)](y - y_{2}^{*}) - A_{2}(B_{3} + F)(y - y_{3}^{*}) \end{cases} \qquad A_{i} = \frac{1}{(1 - R_{i})^{2/3}} \frac{1}{k_{i}(1 + 1/K_{i})} \qquad B_{1} = \frac{(1 - R_{2})^{1/3} - (1 - R_{1})^{1/3}}{(1 - R_{1})^{1/3}(1 - R_{2})^{1/3}} \frac{d_{p}}{2D_{1}} \\ r_{2} = \frac{P}{\tilde{R}T\omega} \begin{cases} [(A_{1} + B_{1} + B_{2})(A_{3} + B_{3} + F) + A_{3}(B_{3} + F)](y - y_{2}^{*}) \\ -[B_{2}(A_{3} + B_{3} + F) + A_{3}(B_{3} + F)](y - y_{2}^{*}) \\ -[B_{2}(A_{3} + B_{3} + F) + A_{3}(B_{3} + F)](y - y_{1}^{*}) - (A_{1} + B_{1})(B_{3} + F)(y - y_{3}^{*}) \end{cases} \qquad B_{2} = \frac{(1 - R_{3})^{1/3} - (1 - R_{2})^{1/3}}{(1 - R_{2})^{1/3}(1 - R_{3})^{1/3}} \frac{d_{p}}{2D_{2}} \qquad B_{3} = \frac{1 - (1 - R_{3})^{1/3}}{(1 - R_{3})^{1/3}} \frac{d_{p}}{2D_{3}} \\ r_{3} = \frac{P}{\tilde{R}T\omega} \begin{cases} [(A_{1} + B_{1})(A_{2} + B_{2} + B_{3} + F) + A_{2}(B_{2} + B_{3} + F)](y - y_{3}^{*}) \\ -A_{2}(B_{3} + F)](y - y_{1}^{*}) - (A_{1} + B_{1})(B_{3} + F)(y - y_{2}^{*}) \end{cases} \qquad F = 1/k_{f} \\ \omega = (A_{1} + B_{1})[A_{3}(A_{2} + B_{2} + B_{3} + F) + (A_{2} + B_{2})(B_{3} + F)] + A_{2}[A_{3}(B_{2} + B_{3} + F) + B_{2}(B_{3} + F)] \end{cases}$$

Yanagiya T., Yagi J., Omori Y. 1979 reduction of iron oxide pellets in moving bed. Ironmaking and steelmaking, No.3 93-100

Bench Scale Testing

Stage II – Char Conversion

Summary of Bench Scale Unit Testing Results

Type of Fuel	Stage I - Coal Volatile		Stage II - Coal Char		Coal		
	CO, H ₂	CH ₄	Lignite char	Bituminous char	PRB	Bituminous	Anthracite
Fuel Conversion, %	99.9	99.8	94.9	95.2	>97	>95	95.5
CO ₂ purity, %	99.9	98.8	99.23	99.1	_*	-	97.3

- Conducted in co-current mode, no gas analyzer was used to monitor the CO₂ purity.

300+ hours operation with >95% conversions of various types of fuel

Bench Scale Testing - 1-D Reducer Modeling

 $\frac{\partial \varepsilon C_i}{\partial t} = -Ug_i \frac{\partial \varepsilon C_i}{\partial x_i} + \sum_l \upsilon_{li} \frac{6(1-\varepsilon)r_l}{d_p}$

 $\frac{\partial E_i}{\partial t} = -Us_i \frac{\partial E_i}{\partial x_i} + \sum_{l} \upsilon_{li} \frac{6(1-\varepsilon)r_l}{d}$

- Assumptions:
 - Both gas and solid streams are in plug flow.
 - Three-interface USCM for representing the overall reaction rate of the pellet
 - Negligible temperature difference between gas and solid.
- Governing Equations
 - Gas Phase
 - Solid Phase
- Numerical Methods
 - Temporal terms are discretized by third order Runge-Kutta schemes
 - Spatial terms are discretized by fifth order schemes

Bench Scale Testing - Stage I Modeling

Bench Scale Testing - Stage II Modeling

Stage II Modeling Results

Stage II Bench Test Results

#	OC flowrate (g/min)	CO ₂ flowrate (mL/min)	N ₂ , flowrate (mL/min)	т, (С)	X _c (%)
7	WP-5mm, 9.6	200	200	1000	87.6
17	OP- 1.5mm, 10.9	200	200	1000	95.2

Both individual particle kinetics model and moving bed reactor model have been developed and validated by experimental results, and helped the reducer design and operation optimization.

Process Simulation and Analysis

Systems Analysis Methodology

- Performance of CDCL plant modeled using Aspen Plus[®] software
- Results compared with performance of conventional pulverized coal (PC) power plants with and without CO₂ capture
 - U.S. Department of Energy, National Energy Technology Laboratory; *Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity* (November 2010)
 - Case 11 Supercritical PC plant without CO₂ capture ("Base Plant")
 - Case 12 Supercritical PC plant with MEA scrubbing system for post-combustion CO₂ capture ("MEA Plant")
- All plants evaluated using a common design basis
 - 550 MW_e net electric output
 - Illinois No. 6 coal: 27,113 kJ/kg (11,666 Btu/lb) HHV, 2.5% sulfur, 11.1% moisture as received
 - Supercritical steam cycle: 242 bar/593°C/593°C (3,500 psig/1,100°F/1,100°F)
 - \geq 90% CO₂ capture efficiency (MEA and CDCL Plants)
 - CO₂ compressed to 153 bar (2,215 psia)
- Results are preliminary, will be used to guide further design improvements

Process Simulation and Analysis

Aspen Plus[®] Modeling Results

	Base Plant	MEA Plant	CDCL Plant
Coal Feed, kg/h	185,759	256,652	207,072
CO ₂ Emissions, kg/MWh _{net}	802	111	28
CO ₂ Capture Efficiency, %	0	90.2	97.0
Solid Waste, ^a kg/MWh _{net}	33	45	43
Net Power Output, MW _e	550	550	548
Net Plant HHV Heat Rate, kJ/kWh (Btu/kWh)	9,165 (8,687)	12,663 (12,002)	10,248 (9,713)
Net Plant HHV Efficiency, %	39.3	28.5	35.2
Energy Penalty, ^b %	-	27.6	10.6

^aExcludes gypsum from wet FGD. ^bRelative to Base Plant; includes energy for CO₂ compression.

First-Year Cost of Electricity

	Base Plant	MEA Plant	CDCL Plant
First-Year Capital (\$/MWh)	31.7	59.6	44.2
Fixed O&M (\$/MWh)	8.0	13.0	9.6
Coal (\$/MWh)	14.2	19.6	15.9
Variable O&M (\$/MWh)	5.0	8.7	8.7
TOTAL FIRST-YEAR COE (\$/MWh)	58.9	100.9	78.4
	L L)	

Accomplishments/Future Plans

Completed

- Synthesis/screening of >300 oxygen carrier particles and selected particles with optimal performance for further testing
- 300 hrs of 2.5 kW_t bench-scale operations achieving volatile and coal char conversions of >95%
- Cold flow model demonstrations evaluating solids/gas handling
- >230 hrs of integrated 25 kW_t sub-pilot scale operations achieving 90-99+% coal conversion
- CDCL process can achieve 97% CO₂ capture and compression with 10.6% energy penalty relative to a conventional, supercritical PC plant without CO₂ capture
- The CDCL process has the potential to meet DOE's goal of ≥90% CO₂ capture at no more than a 35% increase in cost of electricity

Future Work

- Continued integrated 25 kWth sub-pilot demonstration
 - Extended continuous demonstration
 - Varied operating parameters (e.g. coal type, enhancer gas, solid circulation)

Thanks

